3.8.76 \(\int \sec (c+d x) (a+b \sec (c+d x))^2 (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [776]

3.8.76.1 Optimal result
3.8.76.2 Mathematica [A] (verified)
3.8.76.3 Rubi [A] (verified)
3.8.76.4 Maple [A] (verified)
3.8.76.5 Fricas [A] (verification not implemented)
3.8.76.6 Sympy [F]
3.8.76.7 Maxima [A] (verification not implemented)
3.8.76.8 Giac [B] (verification not implemented)
3.8.76.9 Mupad [B] (verification not implemented)

3.8.76.1 Optimal result

Integrand size = 38, antiderivative size = 179 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\left (8 a b B+4 a^2 C+3 b^2 C\right ) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {\left (4 a^2 b B+4 b^3 B-a^3 C+8 a b^2 C\right ) \tan (c+d x)}{6 b d}+\frac {\left (8 a b B-2 a^2 C+9 b^2 C\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac {(4 b B-a C) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 b d}+\frac {C (a+b \sec (c+d x))^3 \tan (c+d x)}{4 b d} \]

output
1/8*(8*B*a*b+4*C*a^2+3*C*b^2)*arctanh(sin(d*x+c))/d+1/6*(4*B*a^2*b+4*B*b^3 
-C*a^3+8*C*a*b^2)*tan(d*x+c)/b/d+1/24*(8*B*a*b-2*C*a^2+9*C*b^2)*sec(d*x+c) 
*tan(d*x+c)/d+1/12*(4*B*b-C*a)*(a+b*sec(d*x+c))^2*tan(d*x+c)/b/d+1/4*C*(a+ 
b*sec(d*x+c))^3*tan(d*x+c)/b/d
 
3.8.76.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.67 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \left (8 a b B+4 a^2 C+3 b^2 C\right ) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (24 \left (a^2 B+b^2 B+2 a b C\right )+3 \left (8 a b B+4 a^2 C+3 b^2 C\right ) \sec (c+d x)+6 b^2 C \sec ^3(c+d x)+8 b (b B+2 a C) \tan ^2(c+d x)\right )}{24 d} \]

input
Integrate[Sec[c + d*x]*(a + b*Sec[c + d*x])^2*(B*Sec[c + d*x] + C*Sec[c + 
d*x]^2),x]
 
output
(3*(8*a*b*B + 4*a^2*C + 3*b^2*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(24* 
(a^2*B + b^2*B + 2*a*b*C) + 3*(8*a*b*B + 4*a^2*C + 3*b^2*C)*Sec[c + d*x] + 
 6*b^2*C*Sec[c + d*x]^3 + 8*b*(b*B + 2*a*C)*Tan[c + d*x]^2))/(24*d)
 
3.8.76.3 Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.06, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3042, 4560, 3042, 4498, 3042, 4490, 3042, 4485, 3042, 4274, 3042, 4254, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 (B+C \sec (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (B+C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\int \sec (c+d x) (a+b \sec (c+d x))^2 (3 b C+(4 b B-a C) \sec (c+d x))dx}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (3 b C+(4 b B-a C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 4490

\(\displaystyle \frac {\frac {1}{3} \int \sec (c+d x) (a+b \sec (c+d x)) \left (b (8 b B+7 a C)+\left (-2 C a^2+8 b B a+9 b^2 C\right ) \sec (c+d x)\right )dx+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \left (b (8 b B+7 a C)+\left (-2 C a^2+8 b B a+9 b^2 C\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 4485

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int \sec (c+d x) \left (3 b \left (4 C a^2+8 b B a+3 b^2 C\right )+4 \left (-C a^3+4 b B a^2+8 b^2 C a+4 b^3 B\right ) \sec (c+d x)\right )dx+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 b \left (4 C a^2+8 b B a+3 b^2 C\right )+4 \left (-C a^3+4 b B a^2+8 b^2 C a+4 b^3 B\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 b \left (4 a^2 C+8 a b B+3 b^2 C\right ) \int \sec (c+d x)dx+4 \left (a^3 (-C)+4 a^2 b B+8 a b^2 C+4 b^3 B\right ) \int \sec ^2(c+d x)dx\right )+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 b \left (4 a^2 C+8 a b B+3 b^2 C\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+4 \left (a^3 (-C)+4 a^2 b B+8 a b^2 C+4 b^3 B\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx\right )+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 b \left (4 a^2 C+8 a b B+3 b^2 C\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {4 \left (a^3 (-C)+4 a^2 b B+8 a b^2 C+4 b^3 B\right ) \int 1d(-\tan (c+d x))}{d}\right )+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 b \left (4 a^2 C+8 a b B+3 b^2 C\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {4 \left (a^3 (-C)+4 a^2 b B+8 a b^2 C+4 b^3 B\right ) \tan (c+d x)}{d}\right )+\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{3} \left (\frac {b \left (-2 a^2 C+8 a b B+9 b^2 C\right ) \tan (c+d x) \sec (c+d x)}{2 d}+\frac {1}{2} \left (\frac {3 b \left (4 a^2 C+8 a b B+3 b^2 C\right ) \text {arctanh}(\sin (c+d x))}{d}+\frac {4 \left (a^3 (-C)+4 a^2 b B+8 a b^2 C+4 b^3 B\right ) \tan (c+d x)}{d}\right )\right )+\frac {(4 b B-a C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}}{4 b}+\frac {C \tan (c+d x) (a+b \sec (c+d x))^3}{4 b d}\)

input
Int[Sec[c + d*x]*(a + b*Sec[c + d*x])^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2 
),x]
 
output
(C*(a + b*Sec[c + d*x])^3*Tan[c + d*x])/(4*b*d) + (((4*b*B - a*C)*(a + b*S 
ec[c + d*x])^2*Tan[c + d*x])/(3*d) + ((b*(8*a*b*B - 2*a^2*C + 9*b^2*C)*Sec 
[c + d*x]*Tan[c + d*x])/(2*d) + ((3*b*(8*a*b*B + 4*a^2*C + 3*b^2*C)*ArcTan 
h[Sin[c + d*x]])/d + (4*(4*a^2*b*B + 4*b^3*B - a^3*C + 8*a*b^2*C)*Tan[c + 
d*x])/d)/2)/3)/(4*b)
 

3.8.76.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4485
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[ 
e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Simp[1/(n + 1)   Int[(d*Csc 
[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x 
], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[ 
n, -1]
 

rule 4490
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1)   Int[Csc[e + f*x]* 
(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1 
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a* 
B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
3.8.76.4 Maple [A] (verified)

Time = 0.98 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.83

method result size
parts \(-\frac {\left (B \,b^{2}+2 C a b \right ) \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (2 B a b +C \,a^{2}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {B \,a^{2} \tan \left (d x +c \right )}{d}+\frac {C \,b^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(148\)
derivativedivides \(\frac {B \,a^{2} \tan \left (d x +c \right )+C \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 B a b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-2 C a b \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-B \,b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+C \,b^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(185\)
default \(\frac {B \,a^{2} \tan \left (d x +c \right )+C \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 B a b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-2 C a b \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-B \,b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+C \,b^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(185\)
parallelrisch \(\frac {-96 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (B a b +\frac {1}{2} C \,a^{2}+\frac {3}{8} C \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+96 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (B a b +\frac {1}{2} C \,a^{2}+\frac {3}{8} C \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (48 B \,a^{2}+64 B \,b^{2}+128 C a b \right ) \sin \left (2 d x +2 c \right )+\left (48 B a b +24 C \,a^{2}+18 C \,b^{2}\right ) \sin \left (3 d x +3 c \right )+\left (24 B \,a^{2}+16 B \,b^{2}+32 C a b \right ) \sin \left (4 d x +4 c \right )+48 \sin \left (d x +c \right ) \left (B a b +\frac {1}{2} C \,a^{2}+\frac {11}{8} C \,b^{2}\right )}{24 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(246\)
norman \(\frac {-\frac {\left (8 B \,a^{2}-8 B a b +8 B \,b^{2}-4 C \,a^{2}+16 C a b -5 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{4 d}+\frac {\left (8 B \,a^{2}+8 B a b +8 B \,b^{2}+4 C \,a^{2}+16 C a b +5 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {\left (72 B \,a^{2}-24 B a b +40 B \,b^{2}-12 C \,a^{2}+80 C a b +9 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{12 d}-\frac {\left (72 B \,a^{2}+24 B a b +40 B \,b^{2}+12 C \,a^{2}+80 C a b -9 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {\left (8 B a b +4 C \,a^{2}+3 C \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {\left (8 B a b +4 C \,a^{2}+3 C \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(291\)
risch \(-\frac {i \left (24 B a b \,{\mathrm e}^{7 i \left (d x +c \right )}+12 C \,a^{2} {\mathrm e}^{7 i \left (d x +c \right )}+9 C \,b^{2} {\mathrm e}^{7 i \left (d x +c \right )}-24 B \,a^{2} {\mathrm e}^{6 i \left (d x +c \right )}+24 B a b \,{\mathrm e}^{5 i \left (d x +c \right )}+12 C \,a^{2} {\mathrm e}^{5 i \left (d x +c \right )}+33 C \,b^{2} {\mathrm e}^{5 i \left (d x +c \right )}-72 B \,a^{2} {\mathrm e}^{4 i \left (d x +c \right )}-48 B \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-96 C a b \,{\mathrm e}^{4 i \left (d x +c \right )}-24 B a b \,{\mathrm e}^{3 i \left (d x +c \right )}-12 C \,a^{2} {\mathrm e}^{3 i \left (d x +c \right )}-33 C \,b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-72 B \,a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-64 B \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-128 C a b \,{\mathrm e}^{2 i \left (d x +c \right )}-24 B a b \,{\mathrm e}^{i \left (d x +c \right )}-12 C \,a^{2} {\mathrm e}^{i \left (d x +c \right )}-9 C \,b^{2} {\mathrm e}^{i \left (d x +c \right )}-24 B \,a^{2}-16 B \,b^{2}-32 C a b \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a b}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C \,b^{2}}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a b}{d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C \,b^{2}}{8 d}\) \(447\)

input
int(sec(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_ 
RETURNVERBOSE)
 
output
-(B*b^2+2*C*a*b)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+(2*B*a*b+C*a^2)/d*(1 
/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+B*a^2/d*tan(d*x+c) 
+C*b^2/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c) 
+tan(d*x+c)))
 
3.8.76.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.01 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, {\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (3 \, B a^{2} + 4 \, C a b + 2 \, B b^{2}\right )} \cos \left (d x + c\right )^{3} + 6 \, C b^{2} + 3 \, {\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (2 \, C a b + B b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="fricas")
 
output
1/48*(3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*cos(d*x + c)^4*log(sin(d*x + c) + 1) 
 - 3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*cos(d*x + c)^4*log(-sin(d*x + c) + 1) + 
 2*(8*(3*B*a^2 + 4*C*a*b + 2*B*b^2)*cos(d*x + c)^3 + 6*C*b^2 + 3*(4*C*a^2 
+ 8*B*a*b + 3*C*b^2)*cos(d*x + c)^2 + 8*(2*C*a*b + B*b^2)*cos(d*x + c))*si 
n(d*x + c))/(d*cos(d*x + c)^4)
 
3.8.76.6 Sympy [F]

\[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (B + C \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)*(a+b*sec(d*x+c))**2*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)
 
output
Integral((B + C*sec(c + d*x))*(a + b*sec(c + d*x))**2*sec(c + d*x)**2, x)
 
3.8.76.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.27 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {32 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a b + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B b^{2} - 3 \, C b^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 24 \, B a b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, B a^{2} \tan \left (d x + c\right )}{48 \, d} \]

input
integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="maxima")
 
output
1/48*(32*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a*b + 16*(tan(d*x + c)^3 + 3* 
tan(d*x + c))*B*b^2 - 3*C*b^2*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin( 
d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d 
*x + c) - 1)) - 12*C*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d* 
x + c) + 1) + log(sin(d*x + c) - 1)) - 24*B*a*b*(2*sin(d*x + c)/(sin(d*x + 
 c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 48*B*a^2*tan 
(d*x + c))/d
 
3.8.76.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 478 vs. \(2 (167) = 334\).

Time = 0.33 (sec) , antiderivative size = 478, normalized size of antiderivative = 2.67 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, {\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (24 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 12 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 48 \, C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 24 \, B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, C b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 72 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 12 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 24 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 40 \, B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 9 \, C b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 72 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 80 \, C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 40 \, B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, C b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 12 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 24 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 48 \, C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 24 \, B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, C b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

input
integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="giac")
 
output
1/24*(3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 
 3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(2 
4*B*a^2*tan(1/2*d*x + 1/2*c)^7 - 12*C*a^2*tan(1/2*d*x + 1/2*c)^7 - 24*B*a* 
b*tan(1/2*d*x + 1/2*c)^7 + 48*C*a*b*tan(1/2*d*x + 1/2*c)^7 + 24*B*b^2*tan( 
1/2*d*x + 1/2*c)^7 - 15*C*b^2*tan(1/2*d*x + 1/2*c)^7 - 72*B*a^2*tan(1/2*d* 
x + 1/2*c)^5 + 12*C*a^2*tan(1/2*d*x + 1/2*c)^5 + 24*B*a*b*tan(1/2*d*x + 1/ 
2*c)^5 - 80*C*a*b*tan(1/2*d*x + 1/2*c)^5 - 40*B*b^2*tan(1/2*d*x + 1/2*c)^5 
 - 9*C*b^2*tan(1/2*d*x + 1/2*c)^5 + 72*B*a^2*tan(1/2*d*x + 1/2*c)^3 + 12*C 
*a^2*tan(1/2*d*x + 1/2*c)^3 + 24*B*a*b*tan(1/2*d*x + 1/2*c)^3 + 80*C*a*b*t 
an(1/2*d*x + 1/2*c)^3 + 40*B*b^2*tan(1/2*d*x + 1/2*c)^3 - 9*C*b^2*tan(1/2* 
d*x + 1/2*c)^3 - 24*B*a^2*tan(1/2*d*x + 1/2*c) - 12*C*a^2*tan(1/2*d*x + 1/ 
2*c) - 24*B*a*b*tan(1/2*d*x + 1/2*c) - 48*C*a*b*tan(1/2*d*x + 1/2*c) - 24* 
B*b^2*tan(1/2*d*x + 1/2*c) - 15*C*b^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 
 1/2*c)^2 - 1)^4)/d
 
3.8.76.9 Mupad [B] (verification not implemented)

Time = 20.88 (sec) , antiderivative size = 317, normalized size of antiderivative = 1.77 \[ \int \sec (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\mathrm {atanh}\left (\frac {4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {C\,a^2}{2}+B\,a\,b+\frac {3\,C\,b^2}{8}\right )}{2\,C\,a^2+4\,B\,a\,b+\frac {3\,C\,b^2}{2}}\right )\,\left (C\,a^2+2\,B\,a\,b+\frac {3\,C\,b^2}{4}\right )}{d}-\frac {\left (2\,B\,a^2+2\,B\,b^2-C\,a^2-\frac {5\,C\,b^2}{4}-2\,B\,a\,b+4\,C\,a\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (C\,a^2-\frac {10\,B\,b^2}{3}-6\,B\,a^2-\frac {3\,C\,b^2}{4}+2\,B\,a\,b-\frac {20\,C\,a\,b}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (6\,B\,a^2+\frac {10\,B\,b^2}{3}+C\,a^2-\frac {3\,C\,b^2}{4}+2\,B\,a\,b+\frac {20\,C\,a\,b}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (-2\,B\,a^2-2\,B\,b^2-C\,a^2-\frac {5\,C\,b^2}{4}-2\,B\,a\,b-4\,C\,a\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \]

input
int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^2)/cos(c + d 
*x),x)
 
output
(atanh((4*tan(c/2 + (d*x)/2)*((C*a^2)/2 + (3*C*b^2)/8 + B*a*b))/(2*C*a^2 + 
 (3*C*b^2)/2 + 4*B*a*b))*(C*a^2 + (3*C*b^2)/4 + 2*B*a*b))/d - (tan(c/2 + ( 
d*x)/2)^7*(2*B*a^2 + 2*B*b^2 - C*a^2 - (5*C*b^2)/4 - 2*B*a*b + 4*C*a*b) + 
tan(c/2 + (d*x)/2)^3*(6*B*a^2 + (10*B*b^2)/3 + C*a^2 - (3*C*b^2)/4 + 2*B*a 
*b + (20*C*a*b)/3) - tan(c/2 + (d*x)/2)^5*(6*B*a^2 + (10*B*b^2)/3 - C*a^2 
+ (3*C*b^2)/4 - 2*B*a*b + (20*C*a*b)/3) - tan(c/2 + (d*x)/2)*(2*B*a^2 + 2* 
B*b^2 + C*a^2 + (5*C*b^2)/4 + 2*B*a*b + 4*C*a*b))/(d*(6*tan(c/2 + (d*x)/2) 
^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^ 
8 + 1))